OBRA DE CONSTRUCCIÓN DE LA LÍNEA 9 DEL METRO DE BARCELONA. TRAMO 4B. SAGRERA–GORG
CONSTRUCTION WORK ON LINE 9 OF THE BARCELONA METRO. SECTION 4B SAGRERA–GORG

DAVID VICARIO LARA. Ingeniero de Caminos, Canales y Puertos
david_vicario@yahoo.es

RESUMEN: La línea 9 del Metro de Barcelona unirá los dos extremos de la ciudad a lo largo de 41 km de trazado. UTE GORG es responsable de 12,396 m de túnel, el 87% de los cuales se ejecutan con una tuneladora EPB de 12,06 m de diámetro, cuyo principio de funcionamiento consiste en igualar la presión de tierras en la cámara de amasado con la presión en el frente de excavación con el fin de sostener el terreno. El diámetro interior del túnel es de 10,90 m, lo que permitirá la circulación de trenes a dos niveles gracias a la ejecución de una losa intermedia. Dado que se atraviesan depósitos de materiales cuaternarios en algunas zonas se trata el terreno con jet grouting y inyecciones de compensación para evitar la posible afectación a edificios cercanos a la traza.

PALABRAS CLAVE: LÍNEA 9, TUNELADORA EPB, LOSA INTERMEDIA, TRATAMIENTO TERRENO

ABSTRACT: The Line 9 of Barcelona's Underground is going to link the two sides of the city along 41 km of layout. UTE GORG is responsible of 12,396 meters of tunnel, 87% of which are excavated with a tunnelling machine EPB which has a 12,06 m diameter. The machine transmits the same pressure from the head chamber to the excavation face in order to provide the stability of the ground. The internal diameter of the tunnel is 10,90 m, which is going to allow trains' circulation in two levels thanks to an intermediate slab. Quaternary materials are found in many parts, so there are areas where soil treatment with jet grouting or levelling grouting is required in order to avoid damages in buildings placed near the tunnel excavation.

KEYWORDS: LINE 9, TUNNELLING MACHINE EPB, INTERMEDIATE SLAB, SOIL TREATMENT

INTRODUCCIÓN

La línea 9 del Metro de Barcelona es una de las obras incluidas en el Plan Director de Infraestructuras de Transporte Público (2001-2010). Una vez construida unirá los dos extremos de Barcelona: desde Badalona y Santa Coloma de Gramanet hasta El Prat de Llobregat y el aeropuerto del Prat. La longitud total de la línea es de 41 km y constará de 43 estaciones.

UTE GORG (Unión Temporal de Empresas formada por Dragados, Nesco, ACS, Comsa y Sorigué) es responsable de la ejecución del tramo comprendido entre Sagrera Meridiana y la estación de Gorg, así como de cinco estaciones: Gorg, La Salut, Llefà, Bon Pastor, Onze de Setembre y Sagrera Meridiana. La longitud total de túnel en la fase 1 de UTE GORG es de 5.645 m, de los cuales 4.990 m se ejecutan con tuneladora EPB y el resto con excavación entres pantalla. UTE GORG también es responsable de una segunda fase, que abarca el tramo entre Zona Franca (ZAF) y la actual parada de la L3 de Zona Universitaria, con una longitud total de 6.751,83 m, de los cuales 5.870,19 m se excavan con EPB y el resto discurre en un tramo entre pantallas.

CARACTERÍSTICAS GENERALES DE LA OBRA

En la tabla 1, se muestran los valores totales de algunas unidades de obra de esta primera fase.

La sección interior del túnel tiene un diámetro de 10,90 m. Esta magnitud permite, por un lado, que se ejecuten las estaciones y las instalaciones auxiliares dentro del túnel, y por otro, la circulación por vías superpuestas gracias a la ejecución de una losa horizontal intermedia.
TABLA 1
VALORES CARACTERÍSTICOS

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presupuesto</td>
<td>234 millones €</td>
</tr>
<tr>
<td>Pilotes y micropilotes</td>
<td>11,115 m</td>
</tr>
<tr>
<td>Pantallas</td>
<td>63,500 m²</td>
</tr>
<tr>
<td>Suelo excavado (estaciones y pozos)</td>
<td>335,000 m³</td>
</tr>
<tr>
<td>Suelo excavado (tuneladora)</td>
<td>532,000 m³</td>
</tr>
<tr>
<td>Hormigón HA-30</td>
<td>31,000 m³</td>
</tr>
<tr>
<td>Acero corrugado</td>
<td>10,500,000 kg</td>
</tr>
</tbody>
</table>

TABLA 2
PARÁMETROS DE TRAZADO

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad máxima</td>
<td>80 km/h</td>
</tr>
<tr>
<td>Aceleración máxima sin compensar</td>
<td>0,65 m/s²</td>
</tr>
<tr>
<td>Aceleración máxima en el acuerdo vertical</td>
<td>0,40 m/s²</td>
</tr>
<tr>
<td>Radio mínimo de la curva</td>
<td>300 m</td>
</tr>
<tr>
<td>Radio curvatura en estación</td>
<td>1,09</td>
</tr>
<tr>
<td>Pendiente máxima</td>
<td>4%</td>
</tr>
<tr>
<td>Pendiente máxima en estación</td>
<td>0,15%</td>
</tr>
<tr>
<td>Peralte máximo</td>
<td>140 mm</td>
</tr>
<tr>
<td>Rampa de peralte máximo</td>
<td>1,50 mm/m</td>
</tr>
<tr>
<td>Radio mínimo de acuerdo vertical</td>
<td>2,000 m</td>
</tr>
<tr>
<td>Longitud estaciones (andenes)</td>
<td>100 m</td>
</tr>
</tbody>
</table>

Los parámetros de trazado son los que se muestran en la tabla 2.

TUNELADORA

La ejecución del túnel se realiza con un escudo EPB (Earth Pressure Balance). Este tipo de tuneladoras se utiliza principalmente cuando nos encontramos ante terrenos cohesivos, que se caracterizan por una buena deformación plástica, una baja fricción interna y una baja permeabilidad de agua.

El terreno que atraviesa la tuneladora en la fase 1 de UTE GORG a lo largo del recorrido se puede caracterizar fundamentalmente en tres tipos: entre el PK 1+000 y PK 3+400 se tiene una cubierta de depósitos de materiales cuaternarios (sobre todo gravas y arenas del delta del río Besós); entre el PK 3+400 y el PK 3+580 se atraviesan rocas paleozoicas ígneas (granodioritas con distinto grado de alteración) y entre el PK 3+580 y PK 5+003 se tiene una cobertura de material terciario del Mioceno (arcilla muy consolidada con gravas).

De acuerdo con lo expuesto en el párrafo anterior, la tuneladora no trabaja excavando materiales cohesivos en gran parte del trazado. Para ello conviene tratar adecuadamente el terreno con espumas y polímeros que permitan obtener las características deseadas de baja fricción interna y baja permeabilidad. Para la excavación del ma-

terial granítico, se diseñó la rueda de corte con 28 discos cortadores dobles y 16 simples.

El principio de funcionamiento del escudo EPB se basa en estabilizar el terreno de forma que la presión de tierras en la cámara de amasado (P1) sea igual a la presión de tierras en el frente de excavación (P2), de forma que si P1<P2 se puede producir un asentamiento del terreno. La presión de tierras se controla con la velocidad de avance, el volumen de material extraído por el tornillo sinfín y la adición de espumas y polímeros al terreno. El terreno excavado se extrae de la cámara de amasado con la ayuda de un tornillo sinfín (Ø = 1250 mm) y va a parar a una cinta que vierte el material al lado del pozo de introducción de la tuneladora.

Después de cada avance, se monta el anillo correspondiente con la ayuda del erector y se rellena inmediatamente el hueco que queda con mortero. Se trabaja con el anillo universal, formado por seis dovelas más la clave, con 19 grados de libertad para la colocación de la dovela clave. El Ø exterior de la dovela es de 11,70 m, el Ø

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø rueda de corte</td>
<td>12,09 m</td>
</tr>
<tr>
<td>Ø parte frontal del escudo</td>
<td>12,06 m</td>
</tr>
<tr>
<td>Ø cola escudo</td>
<td>12,03 m</td>
</tr>
<tr>
<td>Longitud escudo</td>
<td>10,995 m</td>
</tr>
<tr>
<td>Longitud escudo + back-up</td>
<td>97 m</td>
</tr>
<tr>
<td>Presión de tierras máxima</td>
<td>4,5 bar</td>
</tr>
<tr>
<td>Velocidad de avance máxima</td>
<td>80 mm/min</td>
</tr>
<tr>
<td>Velocidad máxima rueda de corte</td>
<td>2,6 rpm</td>
</tr>
<tr>
<td>Cilindros de propulsión</td>
<td>19 pares</td>
</tr>
<tr>
<td>Empuje máximo</td>
<td>138,000 kN</td>
</tr>
<tr>
<td>Carrera cilindros</td>
<td>2,800 mm</td>
</tr>
<tr>
<td>Número de tuberías inyección mortero</td>
<td>10</td>
</tr>
<tr>
<td>Potencia total instalada</td>
<td>6,190 kW</td>
</tr>
</tbody>
</table>
interior es de 10,90 m y el espesor de la dovela es de 400 mm.

Algunas de las características principales de la tuneladora se reflejan en la tabla 3.

Fig. 3. Imagen de la rueda de corte. A la dcha., fig. 4. Vista del Mioceano desde la rueda de corte.
La longitud perforada por la tuneladora actualmente es de 1.579,34 m, habiéndose atravesado ya toda la zona del Mioceno y del granito.

ESTACIONES

Las estaciones de la línea 9 del metro se caracterizan fundamentalmente por la profundidad a la que están ejecutadas, como consecuencia de la profundidad del trazado (por lo general, se tiene una cobertura de terreno de unos 25 m en gran parte del trazado), llegándose incluso, en la zona de Llefià, a discurrir a más de 50 m por debajo de la superficie. Estas profundidades de trazado están motivadas, por un lado para evitar tener problemas de ofección a otras obras subterráneas que hay en la ciudad de Barcelona, y por otro para minimizar los posibles asientos en superficie en la zona en la que se trabaja bajo una cobertura de material cuaternario.

A continuación se lleva a cabo una breve descripción de la definición de las estaciones proyectadas:

- **Accesos**: La localización de las bocas de acceso fue consensuada por las diferentes Administraciones que participaron en el Proyecto. Se disponen tanto bocas de acceso tradicionales a base de escaleras fijas y mecánicas, como ascensores que permiten cumplir la normativa de accesibilidad obligatoria para PMR (personas de movilidad reducida).
- **Vestíbulos superiores**: Dado que el nivel de los andenes es muy profundo, la geometría de los pozos de comunicación tiene mucha importancia en el diseño de los vestíbulos superiores, donde se integra. Desde el vestíbulo superior se puede utilizar un núcleo de ascensores de gran capacidad para acceder a los andenes.
- **Pozos de acceso a prevestíbulos y andenes**: La planta de los pozos es circular en algunos casos (por ejemplo Llefià y Bon Pastor) o rectangular (La Salut). En el caso de La Salut, el recinto está formado por pilotes (de mortero y estructurales secantes) debido a la gran profundidad (en Llefià se ejecutaron pilotes de 57 m de profundidad para los que se tuvo que fabricar un Kelly especial). En Bon Pastor, el pozo se ejecuta mediante pantallas.
- **Andenes**: Los andenes se sitúan dentro de un único cilindro (túnel) con dos niveles, tal y como se puede ver en la Figura 1. Una de las características de la línea es que el andén estará cerrado en su límite, mediante puertas automáticas de abertura conjunta con las de la unidad móvil (vagones).

TRATAMIENTOS DEL TERRENO

Para evitar la posible ofección a los edificios en superficie debido al paso de la tuneladora, sobre todo en zonas en las que se tiene un recubrimiento de cuaternario, se efectúan en algunos tramos una serie de tratamientos del terreno.
Para evaluar estos daños, se realizó inicialmente un estricto análisis del estado de conservación de los edificios situados en el área de influencia de propagación de asientos encima del túnel, y a partir de aquí, utilizando un modelo tridimensional de elementos finitos se estima ron los asientos del terreno y los daños que sufrirían los edificios de acuerdo con el criterio de Boscardín y Cor ding.

En la C/Salvador Seguí se han efectuado columnas de jet grouting a ambos lados de la calle con una inclinación que variaba entre 5º y 37º, para evitar la propagación de la cubeta de asientos a los edificios colindantes. Gracias a la ejecución de las columnas de jet, se redujeron los asientos de cálculo esperados.

Bajo los edificios situados entre las calles Joan Valera y Pau Piferrer (edificios de 9 plantas) se han efectuado inyecciones de compensación. Se ejecutaron dos pozos desde donde se perforaron taladros para la colocación de los tubos manguito. Los taladros se dispusieron entre la posición del túnel a construir y la cimentación existente de los edificios, con separaciones máximas teóricas de 3,0 m. El proceso consistió en una fase de pretratamiento que tenía entre otros objetivos, crear un levantamiento inicial controlado de entre 0 y 3 mm. Durante el paso de la tuneladora se inyectó lechada de cemento a través de los tubos manguitos para compensar los movimientos provocados por el paso de la tuneladora. En la figura 7, se puede ver como durante la fase de pretratamiento se levantó algo el terreno. Así mismo, se observan los asientos provocados por el paso de la máquina y la recuperación del asiento gracias a la inyección. La superficie total tratada fue de 3.415 m².

Está previsto realizar más tratamientos de jet grouting a lo largo de la c/ St Adrià, y tratamiento de inyecciones de compensación en una zona de edificios altos en el distrito de San Andrés cercanos a la Avenida Onze de Septiembre.

![Fig. 6. Forrillado lona superior del pozo en la estación de Tiefita.](image)

![Fig. 7. Gráficas movimientos fase inyección.](image)